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S1. Fabrication process of graphene on hBN

We first spin polyvinyl alcohol (PVA) on an oxidized silicon substrate at 3000 rpm for 60 s and bake

the chip at 75 ◦C for 4 minutes. We then spin Poly(methyl methacrylate) (PMMA) 950 A5 on top of PVA

at 1500 rpm for 60 s and heat it at 75 ◦C for 10 minutes (Fig. S1a). Graphene is deposited on to the

polymer stack by mechanical exfoliation (Fig. S1b and c). After exfoliation, the polymer stack is peeled

off from the substrate and a graphene flake is identified using an optical microscope (Fig. S1d).

After we find the flake we want to transfer, we lay a washer atop the polymer film on the side opposite

to the graphene flake. The washer acts as a support frame for the polymer film and is backed by a piece

of tape to keep it in place (Fig. S1e and f). Since the washer is in between the polymer film and the tape,

it prevents the polymer film from sticking to the tape. We then cut the tape into a small piece around the

washer for transferring.

a b c
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Figure S1: Graphene transfer. a, An oxidized silicon substrate covered by PVA and PMMA. b, The substrate is

held in place by an acetone-soluble blue tape. This blue tape will later be used to peel off PVA and PMMA from the

substrate. c, Graphene is mechanically exfoliated onto the polymer stack. d, The polymer stack (PVA and PMMA)

with graphene on top is peeled off from the substrate. e, After identifying graphene, we put a washer around it

and finally cover it by another tape. This allows us to use more than one piece of graphene per one preparation as

opposed to a wet process in which only one graphene can be used. f, The back side of e showing another piece of

tape used to cover the washers.

Similar to graphene, we prepare a thin sheet of hexagonal Boron Nitride (hBN) by mechanical exfoliation

onto an oxidized silicon substrate (Fig. S2a). A potential hBN flake is identified by optical microscopy and

we subsequently perform atomic force microscopy (AFM) to determine its roughness and thickness. We

typically choose flakes with thickness less than 30 nm and without atomic steps/terraces. hBN flakes of
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Figure S2: Device Fabrication. a, Hexagonal boron nitride is exfoliated onto an oxidized silicon substrate. b, A

piece of graphene is transferred onto hBN. Ripples and bubbles, forming after the transfer process, can be seen in

the optical image. c, Graphene is etched by oxygen plasma into hall bar geometry to avoid the ripples and bubbles.

d, Contacts are defined by electron beam lithography and Cr and Au are deposited by thermal evaporation.

such thickness appear blueish under an optical microscope.

Once a graphene flake on a suspended polymer film and a hBN flake on SiO2 are ready, we use a flip

chip bonder to align the graphene flake to the hBN flake. Upon transferring, we heat up the substrate to

120 ◦C. We then press the polymer film onto the substrate for 5 minutes while keeping the temperature at

120 ◦C.

After the transfer process, often some areas of the graphene flake will have bubbles and/or ripples with

smaller areas laying flat on hBN (Fig. S2b). To remove non-flat regions, we use PMMA as an etch mask

and pattern a Hall bar geometry by standard electron beam lithography. Oxygen plasma etching is then

used to etch uncovered graphene (Fig. S2c). After dissolving PMMA in acetone, we heat anneal the sample

in forming gas (300 sccm of Ar and 700 sccm of H2) to get rid of PMMA residue. The sample is heated up

from room temperature to 350 ◦C for 1 hour and then held 350 ◦C for 2 more hours. After 2 hours, we turn

off the heater and let the sample cool down slowly to room temperature. Contacts are then defined using

electron beam lithography. We thermally evaporate 0.7 nm of Cr and 80 nm of Au, and lift off metals in

acetone (Fig. S2d). We do a final heat annealing before cooling down the sample using the same recipe as

above.
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S2. Determination of SWMcC parameters

The hamiltonian for Bernal stacked TLG with SWMcC parameters is given by [S1]

H =

 Hm D

D† Hb

 ,
where

D =

 ∆1 0 0 0

0 0 0 ∆1

 , Hm =

 ∆2 − γ2/2 v0π
†

v0π ∆2 − γ5/2 + δ

 ,

Hb =



∆2 + γ2/2
√
2v3π −

√
2v4π

† v0π
†

√
2v3π

† −2∆2 v0π −
√
2v4π

−
√
2v4π v0π

† −2∆2 + δ
√
2γ1

v0π −
√
2v4π

† √
2γ1 ∆2 + γ5/2 + δ


.

The SWMcC parameters γi for Bernal stacking TLG are shown in Fig. 1b with the corresponding effective

velocity vi = (
√
3/2)aγi/~ and δ is the on-site energy difference between A and B sublattices. The

parameters ∆1 = (U1 − U3)/2 and ∆2 = (U1 − 2U2 + U3)/3 describe energy difference between layers

where Ui is the potential of layer i. The basis for this hamiltonian is (ψA1 − ψA3)/
√
2, (ψB1 − ψB3)/

√
2,

(ψA1 + ψA3)/
√
2, ψB2, ψA2, and (ψB1 + ψB3)/

√
2 which reflects the even and odd parity with respect to

mirror symmetry of Bernal stacked TLG. We use this hamiltonian to calculate Landau levels numerically by

rewriting π† as
√
2~eBa† for K′ point and

√
2~eBa for K point respectively where a† and a are creation and

annihilation operators for simple harmonic oscillation [S2]. Figure S3 shows how the different parameters

affect the band structure and LL energy spectrum.

To determine the SWMcC parameters, we set γ0 = 3.1 eV which corresponds to v0 = 1×106 m/s [S3–S7]

and γ1 = 0.39 eV [S5,S8–S13]. We vary γ2, γ3, γ4, γ5 and δ and numerically determine the magnetic fields

Bt and filling factors νt at which LL crossings occur. We then compare Bt and νt with the crossing points

observed experimentally. Twelve crossing points can be resolved in the data (Fig. 2, S4 and Table S1).

The best set of SWMcC parameters is the one which yields the correct νt and the minimum value of

ξ =
12∑
i=1

(
Bt

i −Bexp
i

∆Bexp
i

)2

,

4



0

0.04

0.08

-0.04

-0.08

E
n

e
rg

y
 (

e
V

)

0

0.04

0.08

-0.04

-0.08

E
n

e
rg

y
 (

e
V

)

0 5-5

p (10-3 h/a)
0 5-5

p (10-3 h/a)
0 5-5

p (10-3 h/a)
0 5-5

p (10-3 h/a)
0 5-5

p (10-3 h/a)

0 2 64 8
Magnetic field (T)

0 2 64 8
Magnetic field (T)

0 2 64 8
Magnetic field (T)

0 2 64 8
Magnetic field (T)

0 2 64 8
Magnetic field (T)

γ
2 
= - 0.028 γ

3 
= 0.315 γ

4 
= 0.041 γ

5 
= 0.05 δ

 
= 0.046c d e f g

h i j k l

0 5-5

p (10-3 h/a)
0 2 64 8

Magnetic field (T)

0

0.04

0.08

-0.04

-0.08

E
n

e
rg

y
 (

e
V

)

0

0.04

0.08

-0.04

-0.08

E
n

e
rg

y
 (

e
V

)

γ
0 
= 3.1, γ

1 
= 0.39

a b

Figure S3: Dependence of TLG band structure and Landau levels on the SWMcC parameters. a-b,

Band structure and Landau levels of TLG with γ0 = 3.1 eV and γ1 = 0.39 eV. c-l, Band structure and Landau levels

of TLG with nonzero γi (shown on top of each plot) and γ0 = 3.1 eV and γ1 = 0.39 eV.

where Bexp
i and ∆Bexp

i are the values of magnetic field and their uncertainties at the crossing points,

determined experimentally (Fig. 2 and S4). In addition, according to the data at 9 T (Fig. 4), in which

we observe the quantized conductance at ν = 4 but not at ν = 6, we require that the energy gap at ν = 4

has to be larger than the gap at ν = 6.

We find that the positions of the crossing points depend much more strongly on γ2, γ5, and δ than on γ3

and γ4 (see Fig. S3. In fact, the crossing points are almost not affected by γ3. This is because the effect of

γ3 on the band structure is to introduce trigonal warping in the bilayer-like subband at very low energies.

This trigonal warping causes only a slight change in the very low-lying LLs at low magnetic field [S14],

and these are not well resolved in our data (Fig. 2 and Fig. S7), which prevents us from using those LL
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Table S1: Magnetic fields and filling factors at which LL crossings occur. We determine Bexp from the

position of magnetic field at which σxx is locally maximum (data not shown).

N th LLS N th LLB νexp Bexp (T)

-1 -5 -26 7.31

-1 -6 -30 3.04

-2 -11 -54 3.07

-2 -12 -58 2.09

-3 -16 -78 2.57

-3 -17 -82 1.98

-3 -18 -86 1.51

-4 -22 -106 1.78

-4 -23 -110 1.44

-5 -27 -130 1.56

-5 -28 -134 1.35

0 6 23 1.75

crossings in our fitting procedure. Therefore we set γ3 to a fixed value of 0.315 eV [S8], and vary γ2, γ4, γ5,

and δ. We obtain γ2 = −0.028(4) eV, γ4 = 0.041(10) eV, γ5 = 0.05(2) eV, and δ = 0.046(10) eV. Our data

cannot determine γ5 and δ individually accurately because we can access only the low lying term −γ5/2+δ

in the hamiltonian while the other term γ5/2+δ is much higher in energy due to the hybridization through

the nearest inter-layer coupling γ1. However, we can determine −γ5/2+ δ with better accuracy and obtain

−γ5/2 + δ = 0.021(3) eV.

We note that we have set ∆1 = 0 and ∆2 = 0. The effect of ∆1 is to hybridize the SLG-like and

BLG-like subbands, which lifts two of the four low energy subbands to higher energy. ∆2 induces a small

gap in the BLG-like subband. It is reasonable to set ∆2 = 0 because, in a linear response calculation, ∆2

is always zero and, using a self-consistent calculation, ∆2 is still less than 1 mV [S1]. However, the value

of ∆1 could be as high as 50 mV at the density of ∼4 × 1012 cm−2 (∼60 V in back gate voltage) which

we access experimentally [S1]. Such value of ∆1 should affect the LL spectrum, and therefore the crossing

points, very strongly. However, we were unable to find a set of SWMcC parameters which would describe

our crossing points for values of ∆1 larger than about 10 meV, and the agreement was best for values of

∆1 equal to zero.
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Figure S4: Landau fan diagram. a, Color map of Landau fan diagram as a function of back-gate voltage and

magnetic field at 300 mK. White dashed lines are guides to the eye with filling factors labeled on the edge and the

white dashed circles indicate crossing points. b, Landau fan diagram from 6 to 9 T at 300 mK. The measurement is

taken when the sample quality is not high enough to observe LL splitting (Fig. 3a). The absence of the minimum

at ν = −26 can be seen clearly indicating Landau level crossing. c, Calculated DOS as a function of density and

magnetic field. Here we use Γ = 1 mV and the following SWMcC parameters: γ0 = 3.1 eV, γ1 = 0.39 eV, γ2 = −0.028

eV, γ3 = 0.315 eV, γ4 = 0.041 eV, γ5 = 0.05 eV, and δ = 0.046 eV. d, Calculated DOS as a function of density and

magnetic field with Γ = 2.5 mV and the same SWMcC parameters as in c.
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Figure S5: Crossing coordinates. The positions of the crossing points in magnetic field and filling factor for

different sets of parameters. The red circles are the positions of the crossing points determined experimentally.

The naive picture of using a single value of ∆1 to describe the data at all densities is clearly not sufficient,

because ∆1 depends on the carrier density we induce in the system via the back gate voltage. However,

the calculation of LL spectrum with density-dependent ∆1 is much more involved, and requires a self

consistent calculation, beyond the scope of this paper. The fact that we can reproduce the experimentally

observed LL crossing points with ∆1 = 0 may imply that high mobility TLG can screen electric field very

well at high densities (where the LL crossing points are measured), causing the potential of each layer to

be similar.

After obtaining the Landau level spectrum, we calculate the density of states (DOS) by assuming that

the DOS of each Landau level is of the form

DOS(E;ELL) =
2B

h/e

1

π

Γ/2

(E − ELL)2 + (Γ/2)2
,

where ELL is the energy of the LL and Γ is the broadening of the LL due to disorder. The factor of 2 in

front comes from spin degeneracy. We calculate the LL spectrum separately for K and K′ because of their
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non degeneracy. The total DOS can be obtained by summing over the DOS of each Landau level

DOStotal(E) =
∑
ELL

DOS(E;ELL).

We then integrate total DOS in order to obtain the DOS as a function of density and B which can

be used to compare with the experimental data. Figure S6 shows the different LL energy spectra and fan

diagrams for the SWMcC parameters for graphite from different sources (see Table S2), and the comparison

with the spectrum and fan diagram for the SWMcC parameters for TLG obtained in this work.
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Figure S6: Landau fan diagrams with SWMcC parameters from graphite. a-d, Landau level energy

spectrum as a function of magnetic field using the SWMcC parameters determined from graphite from references

[S8], [S15], [S16], and [S17] respectively (Table S2). Red and black curves represent Landau level from K and K′.

e-f, Density of states as a function of magnetic field and density calculated from the energy spectrum in a, b, c,

and d respectively. Figures e and f looks similar to our data but the crossing point at high field (∼5 T) occurs at

ν = 30 instead of ν = 26 observed experimentally. i-j, Landau level energy spectrum and density of states using the

SWMcC parameters from our TLG data.
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Table S2: SWMcC parameters. SWMcC parameters obtained from fitting the positions of the LL crossings

are shown in row 1. The parameters obtained previously on graphite by means of experiment (Exp) and density

functional theory (DFT) are listed in rows 2 to 4. In the last row, the parameters for BLG as determined by infrared

spectroscopy. We note that γ2 and γ5, which describe the hopping between the first and the third layers, are not

present in BLG. Rows 2-5 of this table are adopted from Zhang et al [S11].

Source γ0 γ1 γ2 γ3 γ4 γ5 δ

TLG (Pres. Result) 3.1† 0.39† -0.028(4) 0.315† 0.041(10) 0.05(2) 0.046(10)

Graphite Exp [S8] 3.16(5) 0.39(1) -0.020(2) 0.315(15) 0.044(24) 0.038(5) 0.037(5)

Graphite Exp [S15] 3.11 0.392 -0.0201 0.29 0.124 0.0234 0.0386

Graphite DFT [S16] 2.92 0.27 -0.022 0.15 0.10 0.0063 0.0362

Graphite DFT [S17] 2.598(15) 0.364(20) -0.014(8) 0.319(20) 0.177(25) 0.036(13) 0.024(18)

BLG [S11] 3.0 0.40(1) 0.0 0.3 0.15(4) 0.0 0.018(3)

† The values of γ0 and γ1 are taken from literature where the reported values from different experiments have been

consistent. The value of γ3 cannot be determined accurately and hence is taken from ref. [S8].
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Figure S7: Landau fan diagram at ν = 0. a, Color map of ρxx versus density and B at 300 mK. b, A slice from

a at zero density.

S3. Insulating behavior at ν = 0

We observe an insulating behavior in ρxx at zero density as we increase B. The longitudinal resistivity

ρxx increases from 4.5 kΩ at 0 T to 400 kΩ at 9 T. This insulating behavior at ν=0 is also observed in SLG

and BLG [S18–S21]. In those systems, electron-electron interactions are required to break the symmetry

of the zero energy LL. In TLG, due to the finite values of γ2, γ5, and δ, which cause valley splitting in

the SLG- and BLG-like subbands LLs as well as breaking of the N = 0 and 1 LLs in BLG-like subband,

there are no LLs at zero density. In general, the valley degeneracy is associated with a spacial inversion

symmetry which is present in both SLG and BLG. However, Bernal stacked TLG does not preserve spatial

inversion symmetry and hence the valley degeneracy is not guaranteed [S22]. However, the finite band

overlap implies that there should be edge modes present always, for any value of the Fermi energy (or

density) [S23]. Therefore, electron-electron interactions may play a role in this insulating behavior. Note

that this insulating phase has also been observed in a suspended TLG sample [S24].
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